Anastasios Andronidis

openlab

Puppet Firewall Module and Landb
Integration

Supervisor: Steve Traylen
Student: Andronidis Anastasios

Summer 2012

Anastasios Andronidis

Abstract

During my stay at CERN as an intern, | had to complete two tasks that are related
to Puppet project.

The first task was to debug and add a new feature to a Puppet plugin called
Puppetlabs Firewall. The new feature will make the plugin able to ignore some
firewall chains so Nova OpenStack could work the right way.

The second task was to create a ruby library to communicate with landb though
a SOAP protocol and then, utilize this library to make a Puppet function. After
that, Puppet templates could use this function to retrieve information from
landb.

Anastasios Andronidis

Introduction To Puppet

Puppet is a tool designed to manage the configuration of Unix-like and Microsoft
Windows systems declaratively. The user describes system resources and their
state, either using Puppet's declarative language or a Ruby DSL (domain-specific
language). This information is stored in files called "Puppet manifests". Puppet
discovers the system information via a utility called Facter, and compiles the
Puppet manifests into a system-specific catalog containing resources and
resource dependency, which are applied against the target systems. Any actions
taken by Puppet are then reported.

Among the most powerful features of Puppet are its flexibility and extensibility.
In addition to the existing facts, resource types, providers, and functions, you can
quickly and easily add custom code specific to your environment or to meet a
particular need.

The Puppetlabs Firewall

Such a case is Puppetlabs Firewall module, which provides the resource 'firewall'
which provides the capability to manage firewall rules within puppet.

At the moment this report is being written, Puppetlabs Firewall module
supports:

e iptables
e ip6tables

as firewall mechanisms to manage rules. And

e iptables
e ip6tables
e ebtables

as firewall mechanisms to manage chains.

Some more information of how to install and to use the module can be found
here: http://github.com/puppetlabs/puppetlabs-firewall

Anastasios Andronidis

Objectives
New Parser

Firstly I had to solve some minor bugs on the module parser. At the time this
report is written, there is a pull request at github repository of this module,
which introduces a new and better parser for the iptables rules.
(http://github.com /puppetlabs/puppetlabs-firewall /pull /88)

Istanden opened this pull request a month ago

Rewrite of iptables parser
No one is assigned No milestone

After encountering significant bugs with the iptables parser, I've gone through and rewritten one from scratch which parses
left-to-right. In all my tests so far, every test case which failed previously is working perfectly.

The bugs primarily arise when someone makes a manual change to a server which | wanted Puppet to automatically
revert. Since these manual rules didn't necessarily match the existing supported format, the parser would blow up with very
unhelpful output.

Referenced bugs:

¢ https://projects.puppetlabs.com/issues/15601
¢ https://projects.puppetlabs.com/issues/15646

Improvements over existing version:

* Rules which have "--sport" instead of "-m multiport --sports" (or similar) are correctly parsed

* Rules with invert matches are detected and can be cleaned up (removed) by resources { "firewall": purge => true }
« Other oddities, such as "-m udp" work, since they're correctly interpreted

» Existing rule generation is unchanged, however the parser ensures the correct fields are populated

Known defects:

« | had a look at adding proper support for invert matching, however that requires significant support from the firewall
class, which might not be portable cross platform

« ipBtables hasn't been converted to this new parser... that's a job for another day :)

« Existing issues around comments which don't match the naming policy still apply

* Rules which are matched using the --sport method are not "converted" to the multiport method, however that shouldn't
be an issue in most cases since they're functionally identical. Perhaps we could change the format rules are written in
to only use multiport when there are multiple ports?

Double Rules

The new parser solved some of the problems. But there were more, like the
double existence rule problem (https://projects.puppetlabs.com/issues/15702).
In this bug, if a rule that you wanted deleted, exists more than once in your
iptables rule table, it would be deleted only once.

Anastasios Andronidis

Rule Arguments

Although the new parses seems to work great, some minor bugs still existed.
Some arguments like “--log-prefix” couldn’t be parsed correctly.

andronat commented 24 days ago

Hello! There is a small bug in —-log-prefix argument and the quotes. | made a small fix:

https://github.com/andronat/puppetlabs-firewall/commit/01314f26aaf748eca9822a032133d03909b2aa8b
New Feature
The main part of my work is focused on a new feature that will give the
possibility to the module, to ignore certain firewall chains. For instance, you will

be able to declare a chain at the Puppet template like this:

firewallchain {

ensure

manmged ==

and every rule that is inside this chain will be ignored for management.

This feature will help the collaboration between OpenStack and Puppet. Nova
(which is part of OpenStack) is dynamically generating rules for the VMs. Until
now, Puppet was overwriting every change OpenStack was making.

Anastasios Andronidis

Implementation
New Parser

In my point of view, git is the best tool to manage source code from many
different sources. In this part of my project I had to merge the main code from
puppetlabs (http://github.com/puppetlabs/puppetlabs-firewall) with the new
parser source code (http://github.com/Istanden/puppetlabs-firewall).

A good approach to make merges like of this kind, is to fork the main project
from github, and then add as a remote source the project you want to merge and
change. In our example we fork the puppetlabs master branch and we add as a
remote source the new parser. We should fetch the new branch as a different
branch to our repository.

Double Rules

After some testing to the new parser I found the double rule bug. This bug was
cased because the rules that had to be deleted, had the same name. The fix was
easy. | just added a unique number at front of each rule.
(https://projects.puppetlabs.com/issues/15702)

(http://github.com /puppetlabs/puppetlabs-firewall /pull/90)

3 EEm 1lib/puppet/provider/firewall/iptables.rb View file @ edceafa

Puppet-firewall requires that all rules have comments (resource names) and will fail if
a rule in iptables does not have a comment. We get around this by appending a high level
if | hash[:name]
hash[:name] = "9999 #{Digest::MD5.hexdigest(line)}"
+ num = counter + 9999
+ hash[:name] = "#{num} #{Digest::MD5.hexdigest(line)}"
end

Iptables defaults to log_level '4', so it is omitted from the output of iptables-save.

Rule Arguments

As the testing continues, I found a problem parsing the “--log-prefix” argument.
The exact problem was the quoting. The new parser was expecting this argument
to have a strip string (without quotes and be only on word). By adding some
code I managed to make it parse it correctly.

9 EEEEE 1lib/puppet/provider/firewall/iptables.rb View file @ e1314f2

name = name.join(' ')
name = name.gsub(/"/, '')
hash[:name] = name
when /--log-prefix/
log_prefix = []
while not row[i] =~ /"$/
i+=1
log_prefix << row[i]
end
log_prefix = log_prefix.join(' ')
log_prefix = log_prefix.gsub(/"/, '')
hash[:log_prefix] = log_prefix
when /--tcp-flags/
hash[:tcp_flags] = row[i+1] + " " + row[i+2]
i+=1

+ o+ 4+ o+ o+ o+

Anastasios Andronidis

New Feature

As we explained before, the objective at this point is to make the module ignore
rules that are declared at some specific firewall chains.

The Puppet module writing interface, it is separated in two major components,
lib/puppet/type and lib/puppet/provider.

The lib/puppet/type is where you declare the interface of your module. At this
point you declare the variables and actions that your module can provide. In our
example in the type ‘firewallchain’ we will declare our new action ‘managed’.

10 EEEEN 1lib/puppet/type/firewallchain.rb View file @ 23bc6aa

end
end

newparam(:managed) do
desc <<-EOS
This is a parameter to set if you want a chain to be ignored from the plugin and
not deleted.
EOS

newvalues(:true, :false)
defaultto :true
end

I T

validate do
debug("[validate]")

Next step is to code how the module is working. This will happen inside
lib/puppet/provider. Puppet has some ‘key’ functions to make a workflow of
how you should write your provider. In our case the ‘key’ function that we
should do our changes is self.instances. This function is reading the every rule
existing in the firewall of the current client. This means that we should create a
method there that will give us the control of which rule will be loaded and which
one will not.

def self.instances
debug "[instances]"
table = nil
rules = []
counter = 1

Get unmanaged chains and cache the result.
@2unmanaged_chains ||= unmanaged_chains_from_catalog

String#lines would be nice, but we need to support Ruby 1.8.5
iptables_save.split("\n").each do Ilinel
unless line =~ /A\#\s+|A\:\S+|ACOMMITIAFATAL/
if line =~ /A*/
table = line.sub(/*/, "")
else
if hash = rule_to_hash(line, table, counter)
if !@Bunmanaged_chains.include? hash[:chain]
rules << new(hash)
counter += 1
end
end
end
end
end

rules
end

Anastasios Andronidis

As you can see we created a class variable named ‘@@unmanaged_chains’ where
we collect the names of the chains that should we ignored from Puppet. (How we
collect the chain names will be explained in a minute.) The function
‘rule_to_hash’ is iterating all the rules that exist in the current machine and
returns each rule as a hash. So we have to check of each rule if the chain of the
rule is inside the collection of unmanaged_chains variable. If it is we skip the
rule.

One more thing I want to mention at this point is that I used class variable,
instead of an instance variable or a local variable, for caching reasons. Puppet
seams to do a lot of calls of selfinstances for a single run. So using
‘@@unmanaged_chains ||= unmanaged_chains_from_catalog’ we cache our
results.

The way we collect the unmanaged chain names is though the method
‘unmanaged_chains_from_catalog’.

Get all chains that have ’'managed’ attribute equal to false.
def self.unmanaged_chains_from_catalog
unmanaged_chains = []

Get all chains from the current catalog.
Puppet::Face[:catalog, :current].find(Puppet[:certname]).resources.each do |resourcel
if resource.type =~ /Firewallchain/
From all declared chains that have attribute 'managed => false', find the names.
if !resource[:managed]
unmanaged_chains << resourece.to_hash[:name].split(':').first
end
end
end

unmanaged_chains
end

This method is calling the Puppet catalog from memory and asks for all the
resources of the current machine. It collects all Firewallchain types and then
keeps only those that have the managed attribute equals to false. Then returns
an array of all the chain names.

One last thing that [must mention is that at the end of each run, Puppet is calling
a function called ‘flush’ to clear unwanted variables and conditions. We use this
function to clear the ‘@@unmanaged_chains’ class variable so we can be sure
that in each run, Puppet is always reading the latest catalog from memory.

Flush the property hash once done.
def flush
debug("[flush]")
if @property_hash.delete(:needs_change)
notice("Properties changed - updating rule")
update
end
@property_hash.clear

Clear unmanaged chains in each run.
@2@unmanaged_chains = nil
end

Anastasios Andronidis

Conclusion and Future Work

The project is still beta. A lot of work must to be done for a production level
product. Numerous bugs still exist and if someone wants to use the module must
test it thoroughly.

As a future work proposal, the module can be extended to also handle firewall
tables. A good hierarchy approach much be used though. My opinion is that the
module must be splited in three different types (firewalltable, firewallchain,
firewallrule) and each type must ‘autorequire’ each other from the table to chain
to rule. In this way the instances of tables will be created first and from biggest
(table) to small (rule), will be a hierarchy approach and management.

Anastasios Andronidis

Puppet and Landb integration

Landb is an online database where CERN storage information about networks
and network hardware.

Puppet is a management tool that could use this stored information to automate
configuration to lots of devices that need information from this database.

But this to happen we need a ruby wrapper of the communication protocol the
database and a Puppet function to call this wrapper.

Objectives
Ruby gem

As a second part of my work at CERN Openlab, was to create a ruby library
(actually a ruby gem) that will communicate with Landb though SOAP protocol,
and retrieve information. For instance, for a given device name we must fetch the
room of the device location. (https://network.cern.ch/sc/soap/4/)

Example
cl = LandbClient.instance
r = cl.get_device_info(['PCITCS57'])
r.device_info.location.room
= "0005"

Puppet function
Later on, we need a Puppet function to integrate the gem with Puppet. We also

need a DSL (Domain Specific Language) so the end user can ask the information
he wants from Puppet.

$hash = cern_lan_db_func({

N

Anastasios Andronidis

Implementation
Ruby gem

The project is consisted of two major classes. The LandbClient and the
LandbResponse.

LandbClient

The LandbClient is a dynamic class that reads a WSDL document and creates its
instance methods from the SOAP actions of the WSDL document. For instance, at
landb SOAP server there is an action called GetAuthToken. This ruby gem is
creating an instance method called get_auth_token from the above SOAP action.

token = client.get_auth_token ["username”, "password", "NICE"]

The whole mechanism of creating the methods dynamically is in the ‘initialize’
method of the class. The names of the SOAP actions are taken from a
supplementary gem called ‘Savon’.

As the developers of ‘Savon’ (http://savonrb.com) say: ‘Savon helps you talk to
SOAP services. It abstracts a lot of insanity.’

One more interesting thing that landb gem can make, is to understand how many
arguments each SOAP action has, through the WSDL document. There are two
methods ‘help_all_operations’ and ‘help_arguments_for_operation(operation)’
which can help the user find all the actions and the arguments of each action.

LandbResponse
The LandbResponse is a wrapper class for the SOAP responses of landb. This
class takes the SOAP response as a hash and costructs ruby objects with methods
and variables with the same names as the retrieved information.
Example

cl = LandbClient.instance

r = cl.get_device_info(['PCITCS57'])

r.device_info.location.room

|:> IIOOOSH
At this example, r is a LandbResponse class.

Puppet function

As a second requirement for my project, I created a Puppet function that uses the
above gem and retrieves information from landb.

We needed a custom DSL for the Puppet manifests to be able to handle and use
the gem. An example of this DSL is:

11

Anastasios Andronidis

notify { $hash: }

As you can see the function accepts a hash as an argument. This hash can contain
3 keys and values for each key.

The first key ‘method’ is responsible for the SOAP action we want to call. In our
example we call ‘get_device_info’ method.

The second key ‘method_arguments’ accepts the arguments for the SOAP action.
If the arguments are more than one, the Puppet template should use an array to
pass the arguments.

The third key ‘response_info’ is responsible for collecting the information from
the response of the above SOAP action. It accepts an array of strings that
represents a path of chained methods of the LandbResponse class. In our
example we request two different information. The return values will be inserted
in an array and will be saved in $hash Puppet variable.

Conclusion

The code and gem are all at this url: (https://gitgw.cern.ch/gitweb/?p=gem-
landb.git;a=summary;js=1) for more information there are lots of REAME files
inside the repository.

1?2

Anastasios Andronidis

References

http://www.puppetlabs.com

http://docs.puppetlabs.com

http://forge.puppetlabs.com
http://forge.puppetlabs.com/puppetlabs/firewall
https://github.com/puppetlabs/puppetlabs-firewall
https://github.com/andronat/puppetlabs-firewall
http://guides.rubygems.org

http://www.ruby-lang.org

9. https://gitgw.cern.ch/gitweb/?p=gem-landb.git;a=summary;js=1

PN W

10. ssh://gitgw.cern.ch:10022/gem-landb
11. https://network.cern.ch/sc/soap/4/
12. http://openlab.web.cern.ch

1

